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Molecular model potential calculations have been performed within the SCF 
approximation on nine di- and triatomic molecules from the first row of the 
periodic table. We compare the molecular constants with ab initio SCF values and 
with model potential results obtained by other authors. Our results are accurate to 
a few per cent. The three most significant approximations in molecular model 
potential theory are: 1) The molecular model potential is the sum of atomic model 
potentials; 2) The atomic model potential is energy-independent; 3) The electron 
interaction model operator is 1/r12. We arrive at the following general conclusions 
concerning these approximations: 1) The first approximation does not hold for 
strongly ionic molecules and for some highly excited molecular states. 2) Approxi- 
mations 2 and 3 cancel to a large extent in molecules as they do in atoms, except 
in the case where approximation 1 breaks down. 3) Although various model- and 
pseudo-potentials yield reasonable results for atoms, not all of them are suitable 
for molecular calculations. 

Key words: First row elements, di- and triatomic molecules consisting of ~ - 
Pseudopotential method 

1. Introduction 

The pseudo- or model-potential method reduces the all-electron molecular Schr6dinger- 
equation to a valence-electron-only problem. Thus a series of homologous molecules 
from a column of the periodic table has Hamiltonians with the same structure and 
number of electrons. Therefore trends in the molecular properties can be simply 
related to changes of the model potential operators of the atoms in one column. 
Additionally, compared with all-electron ab initio methods, the computational effort 
is drastically reduced if we only treat the valence electrons and if we neglect the com- 
plicated structure of the canonical valence orbitals in the atomic core region by intro- 
ducing nodeless pseudo-valence orbitals, which require only a small number of basis 
functions. 

* Present address: Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, 
China 
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In pseudopotential theory the atomic cores are represented by non-local pseudopotential 
operators. They are often approximated by simple expressions, the so-called effective 
or model potentials. These model potentials contain parameters which are determined 
by adjusting some atomic properties to the corresponding quantities obtained from 
all-electron ab initio calculations or obtained from experiment. 

Several years ago one of us analyzed this concept [1]. A series of approximations had 
to be introduced in order to derive a satisfactorily simple molecular model Hamiltonian. 

1) Core-Valence Separability. This means the neglect of core-valence correlation 
(polarization) effects. However, already in the second row of the periodic system, 
the core-valence pair-correlation energies are of the order of 10 -1 eV. Their neglect 
will not only result in deviations of the calculated pseudo-energies but also in reorganiza- 
tions of the pseudo-wavefunctions of heteronuclear molecules, producing incorrect 
atomic populations, dipole moments (see e.g. [42] ), oscillator strengths etc. Therefore 
it seems recommendable to add an empirical core-polarization potential to the effective 
potential. The simplest way o f  doing this is to adjust the total effective model potential 
to experimental data, preferably to experimental energies. These empirical model 
potentials have also a further advantage in comparison with the conventional ab initio 
(non-relativistic SCF) model potentials, since they automatically account for the sig- 
nificant relativistic reorganization effects in heavier atoms. 

2) Constancy o f  the Effective Potentials o f  the Atomic Cores. The model potential 
of the molecule is taken simply as the sum of constant effective potentials of the 
atomic cores, which are assumed to be independent of the energy of the valence 
electrons or of other surrounding cores. However, the exact pseudopotential operator 
depends on the core orbitals and also on the core and valence orbital energies [1]. 
These energies change considerably when we go from the separated atoms to a molecule 
or when we change the number of valence electrons or the configuration and state of a 
system. The approximation of frozen core orbitals seems better justified in most cases, 
but large deviations are expected in strongly polar molecules [1], in transition metal 
atoms [2], and in some excited states. 

3) Neglect o f  Additional Projection Operators. The exact pseudo-Hamiltonian and also 
the exact pseudo-Fock operator contain additional core-projection operators ~c to be 
multiplied with the one- and two-electron operators in the case of several valence elec- 
trons. However, only by neglecting them can the method be made considerably faster 
than a full calculation. Of special importance is that the electron interaction operator 
in the pseudopotential formalism is approximated by the usual 1/r12 instead of the 
correct core-projected operator ~c(1/r12 ) ~c. 

One now hopes that the errors introduced by these approximations will, to a large 
extent, cancel in most cases. Of course different parametrizations of the model 
potentials will lead to a different extent of cancellation. In Ref. [2] we have investi- 
gated the case of atoms with different numbers of valence electrons. The following 
ansatz for the model potential, which describes the interaction of one valence electron 
with one atomic closed shell core, turned out to be quite successful in this respect: 
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Ze A 
Vmod - e rang (1)  

r f 

/max 
Vang = ~ Vt(r)'~i (2) 

/=o 

Vl = G "  exp ( -T t"  r2) �9 (3) 

The first term in Eq. (1) represents the long-range Coulomb attraction of  the core with 
ionic charge Zc. The second term approximates the additional at traction caused by 
a) the incomplete shielding of  the total nuclear charge by the core electrons, b) the 
exchange interaction of  the valence electron with the core shells, and c) the polariza- 
tion of  the core by the valence electron (core-valence correlation). We emphasize our 

finding, that in order to obtain pseudopotential  results of  good quality, it is very 

important  to have an attractive potential  of  medium range in addition to the long-range 

ionic Coulomb potential .  The last term in Eq. (1) is the so-called angular project ion 
potential  Vang. This short-range repulsive potential  prevents the variational collapse of  
the valence electrons. NI projects onto the subspace of angular momentum 1 with respect 

to the atomic core, and/max is the highest angular momentum in the atomic core, We 

adjust the parameters A,  a ,  Q ,  7l to a few low-lying experimental energies 1 of  one 
valence electron in the field o f  the atomic core. The parameter  values for first-row 
atoms are given in Table 1. 

Our molecular model  Hamiltonian is then given by 

Hm~ = - -  Ae + + 5 + ~  Vcc'. (4) V;od(rc  ) a 1 , 
e e~e e~e t ~ c l  

Here c denotes the different atomic cores and e the valence electrons. Vcc' is the inter- 
action potential  of  the two cores, the main contr ibution being the Coulomb repulsion 
Zc "Zc'/rec'. The other contributions are rather small and are discussed in Ref. [3]. 

Table 1. Model potential parameters for first-row atoms (in atomic units) 

He Li Be B C N O F Ne 

A 2 2 2 2 2 2 2 2 2 
1.3 2.34 3.361 4.363 5.361 6.354 7.340 8.313 9.28 

Co 5.7 9.128 16.219 26.669 40.338 57.205 77.259 100.487 126.88 
3'o 0.7 1.5 2.8 4.6 6.9 9.7 13.0 16.8 21.1 

I Several authors [7, 35, 36] have emphasized that it is insufficient to use only one energy level 
to determine the model potential, and have recommended the adjustment of the pseudo-orbital 
in addition to an SCF valence orbital in one manner or another. It seems that adjusting the model 
potentials to a series of energies is of comparable quality. 
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Two questions may now be raised: 

1) Will the errors in approximations 2 and 3 cancel each other to the same extent in 
molecules as they do in atoms? 

And, more specifically: 

2) Are the constant atomic model potentials additive in all types of molecules? 

In order to investigate these problems, we have performed model potential SCF- 
calculations on a series of two and three atomic molecules with different numbers of 
valence electrons at different internuclear distances. In the next section we present our 
results. In Sect. 3 we will compare our results with those of other authors. We have, 
therefore, calculated molecules, which have already been treated before by other 
workers, in a more or less successful manner. In this paper we will restrict ourselves 
to first-row molecules. In spite of the fact that the model potential method will only 
slightly reduce the computational effort in this case, a careful test of the method should 
start with such molecules. Firstly, for small molecules, the most reliable all-electron 
ab initio results are available for comparison. Secondly, additional difficulties are pre- 
dicted [1,2] for molecules with the thick and soft cores of heavy atoms. Therefore, 
if the method fails for some light molecules, it will not be sensible to handle the 
corresponding heavier ones. 

2. Model Potential MO-SCF Calculations 

In order to test the model theory, one should ensure that the possible deficiencies are 
mainly due to the theory itself, and not due to the numerical approximations of the 
computational technique. One can then be sure that the good results possibly obtained 
are not due to the fortuitous cancellation of methodical and computational errors. 
Therefore we have used basis sets of better than double-zeta quality. Gaussian lobe sets 
have been chosen. The corresponding model potential integrals are given in Ref. [2]. 

Since basis functions optimized in all-electron calculations are not the optimal ones 
for model potential calculations, we have in most cases used even-tempered basis 
sets with exponential factor 1/3, the exponents covering the same range as in the basis 
sets of Veillard [33]. Usually they were grouped into five contractions of s type and 
four contractions ofp  type, with coefficients obtained from atomic calculations accord- 
ing to Dunning's rules [34]. To account for polarization one or two s-p sets were placed 
at each bond center or at 1/3 and 2/3 of the bond. All-electron calculations have also 
been performed for comparison. The latter calculations show that with these basis sets 
we reach the Hartree-Fock limit within at least a few tenths of an eV and often con- 
siderably better. 

In Tables 2 to 9 and Figs. 1 to 3 we present our results for nine different di- and tri- 
atomic molecules. When we compare all-electron ab initio SCF energies with the cor- 
responding model potential values, we should remember that our model potentials 
have been adjusted to experimental energies and therefore account for core-valence 
correlation. Consequently the model orbital energies should be lower than the full 
SCF values by about 0.1 to 0.15 eV [2]. The model dissociation energies should also 
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emerge sl ightly larger in  absolu te  value:  since the  valence e l ec t ron  dens i ty  near  the  cores 

is h igher  in the  molecu le  t h a n  in the  a toms ,  the  core-valence co r re l a t ion  energy will be  

larger in the molecule .  However ,  even af te r  tak ing  a c c o u n t  o f  the  core-valence correla-  

t ion ,  our  a tomic  2s orbi ta l  energies t end  to  be  t oo  low (see Tables  2, 3, 5). This  e r ror  

in the  a tomic  ca lcu la t ions  will, o f  course ,  be  carr ied over to  the  molecu la r  ca lcula t ions .  

Table 3. Molecular constants of N2 

Other Model Calculations 
Exp. Near This Work 
Value HF Switalski + McWiUiams + 
[6, 10] [11] FullSCF ModelSCF Schwartz [7] a Huzinaga [40] 

R e  [A] 1.09 1.06 1.06 1.07 1.29 1.09 
D e [eV] 9.90 5.34 5.20 5.02 5.60 
co [eV] 0.29 0.34 0.34 0.32 0.31 
2ag e [eV] - -17.28 -17.15 -17.25 -16.23 -17 .06  

I.P. 15.5 15.99 15.86 15.89 
br  u e - -16.75 -17.21 -17.26 -16.23 -16.78 

I.P. 16.8 15.34 15.81 15.97 
l a  u e - -21.17 -20.97 -21.21 -22.38 -20.87 

I.P 18.6 19.74 20.01 20.26 
l o g  e (I.P) (37.3) -40.10 -41 .32  -41.88 -38.61 -41 .29  

N 4 S :  e (2p) -15.44 -15 .44  -15.57 -15 .29  
e (2s) -25.72 -25 .72  -25.98 -25 .53  

a Two-electron scaling parameters for the N atom adjusted to NH3 ! 

Table 4. Molecuhr constants of BeO 

This Work 

Exp. Value Full SCF c 
[ 101 (Near HF) Model SCF 

Model SCF 
[12] a 

R e [A] 1.33 1.29 1.27 
D e [eV] 2.5 1.95 2.05 
co [eV] 0.184 0.226 0.202 
eb~r [eV] -10.77 -10.84 

o -12.66 -12.71 
a -31.55 -32.24 

#b [Debye] 7.35 7.30 

-10.33 
-12 .10  
-30 .58  

a Only the Be ls 2 core is approximated by a model potential! 
b At experimental bond length. 
c Nearly identical with the results of McLean and Yoshimine [411- 
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Table 5. Molecular constants of LiF 

67 

This Work 

Exp. Value Full SCF c 
[ 30 ] (Near HF) Model SCF 

Model SCF 
[12] a 

R e [A] 1.56 1.55 1.40 
D e [eV] 5.96 4.07 4.32 
co [eV] 0.120 0.142 0.112 
ebTr [eV] -12.94 -12.85 

a -13.63 -13.54 
o -37.50 -38.36 

ub [Debye] 6.28 6.31 6.21 

F: e (2p) [eV] -19.86 -19.81 
e (2s) -42.79 -43.60 

-12.69 
-12.79 
-37.09 

a only the Li ls  2 core is approximated by a model potential! 
b At experimental bond length. 
c Nearly identical with the results of McLean and Yoshimine [41 ]. 

Table 6. Molecular constants for LiH 

This Work 
Exp. Value 
from Full SCF b 
Ref. [13] (Near HF) ModelSCF 

Model SCF 
[12] 

Re [A] 1.60 1.60 1.57 
De [eV] 2.52 1.48 1.55 
co [eV] 0.174 0.178 0.175 
e leVI (7.7) a 8.210 8.22s 

[Debye] 5.88 6.00 6.02 
8.15 

a Ionization potential. 
b Nearly identical with the results of McLean and Yoshimine [41 ]. 

Table 7. SCF calculations on Bell2 for R (Bell) = 1.345 A 

This Work 

Full SCF a 
Energies in eV (Near HF) Model SCF 

Model SCF 
Integ. 
Approx. 

Model 
Potential 
[12] 

De -5.17 -5.58 -5.47 
e (au) -11.92 -12.22 -12.22 -12.63 
e (Og) -13.56 -13.33 -13.32 -10.67 
e (Be2s) -8.41 -8.45 -8.45 -8 .22 

a Nearly identical with the results of Ahlrichs [38]. 
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Table 8. Molecular constants  o f  LiH + 

T.-C. Chang et aL 

Recommended  
Value [141 

Model Potential  

This Work Ref. [15 ] 

Re [A] 2.19 2.17 2.4 
De [eV] 0.15 0.14 0.09 
co [eV] 0.055 0.058 0.044 
e [eV] - 13.75 13.69 

Table 9. Molecular constants  of  Li~ 

Recommended  
Value [ 16 ] 

Model Potential  

This Work Ref. [15 ] 

Re [A] 3.16 
D e [eV] 1.29 
to [eV] 0.032 
e [eV] 

3.10 3.14 
1.28 1.23 
0.033 0.033 
6.67 6.62 

-10 

eV 

-15-  

-20-  

-35 

J al 

-~0  
I o 

90 ~ 135 180" 

Fig. 1. Orbital energies e of  H 2 0  as a func t ion  of  the  bond  
angle for R(OH) = 0.94 A. ---- Model SCF, - . . . .  full SCF. 
The vertical bars indicate the  variation o f  e wi th  a 0.1 A 
change of  bond  length 
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[ev] 

2- 

-2. 

-4-  

21s 5 3:5 Lao] 
Fig. 2. Potential energy curve of BeO. - -  
Model SCF, - . . . .  full SCF 

1 0 ~  . . . .  

8t ;; 7 

\ 

2 -  \\ 

, f 
2 4 ca ,1 

Fig. 3. Potential energy curves of Hell. - -  
Model potential approximation, - . . . .  full CI 
result [17] 

Bearing these facts in mind one may find that the modelpotential results show a 
remarkably good accuracy in general but with some typical deviations which will be 

discussed below. Usually the model energies are reliable to within 0.1 to 0.2 eV, the 

geometric data to within a few 0.01 A, the force constants to within 10% and the dipole 

moments to within 0.1 D. In some cases, the accuracy of  the results lies within the 
accuracy of  the numerical limits. 

2.1 Compounds of the Non-Metals 

Most molecular model potential calculations deal with covalent molecules and with 

hydrides. Two examples of  strongly bonded molecules with many valence electrons 
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are H20 and N 2. Since the atoms B to F possess very small and hard cores, which 
remain nearly unperturbed by the valence electrons, the frozen core approximation 
and the assumption of the constancy of atomic model potentials in these molecules is 
expected to be highly accurate [1]. 

However, one type of deviation is found in the H20  model calculations. The error 
in the energy of the lowest valence MO, e(2ax), varies slightly with bond angle and 
decreases for bent geometry (see Fig. 1). However, the other model orbital energies are 
parallel to the SCF curves. Also the model result for the "inversion barrier", Emi n 

(180 ~ - Emi n (105~ is tOO large by 0.1 eV (see Table 2). This can be explained in 
the following way: In linear geometry the 2al MO has no 02p contribution whereas in 
bent geometry it has. The atomic 2s model orbital energy is too low, but the 2p result 
is correct. Therefore the error of E(2al)  is expected to decrease upon bending. In other 
words, the reason is that the correct two-electron operator in pseudopotential theory is 
of the type Vang(l /r12)Vang , which differs from the simple 1/r12 and results in angular 
dependent deviations. 

2.2 Compounds o f  the Electropositive Metals 

The electropositive atoms Li and Be have large and soft cores. Their uppermost core 
orbital energies are rather high and are comparable with the lowest valence orbital 
energies of electronegative atoms. E.g. in LiF the Li ls core orbital is mixed with a 
2% F2s-valence orbital at the molecular equilibrium distance. At shorter distances the 
mixing rises sharply. Correspondingly the correct molecular valence orbital also con- 
tains varying contributions from the core AO's which exceed the contribution caused by 
the orthogonality constraint. It has been pointed out in Ref. [1] that this mixing of 
core and valence AO's may lead to considerable deviations of  the model results from the 
correct values (e.g. ground-state energies might turn out too low), especially for small 
internuclear distances. 

In Tables 4 and 5 and in Fig. 2 we present results on two strongly polar molecules (BeO, 
LiF) and in Tables 6 to 9 results on the less-polar hydrides (Bell2, LiH, LiH +) and on a 
non-polar molecule (Li~-). Large deviations occur in the two polar molecules, especially 
in LiF. The model potential curves are too low at small internuclear distances. As a 
consequence, the equilibrium distance Re emerges too short, the minimum of the 
potential curve, -De, is too low, and the vibrational frequency is too small. At the 
equilibrium distance the orbital energy of the lowest valence MO is too low. This 
deviation is larger than in the case of the 2s AO's in the free O or F atoms. For shorter 
bond lengths the error of the MO energy increases. However, this error is considerably 
less pronounced than the error of the total (binding) energy. The sum of the orbital 
energies differs from the total energy in the two-electron part. It is then evident that 
the errors introduced by approximations 2 and 3, which refer to the one- and two- 
electron part of the Hamiltonian, respectively, do not cancel each other to a sufficient 
extent in these strongly polar metal compounds. 

Since the Hls  orbital energy does not lie as low as the energy of the O2s or F2s orbitals, 
the above-mentioned deviations are much smaller in the hydrides. 
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2.3 Hell  

Finally we present results for the Hell molecule, which possesses the extremely soft 
Hels 2 core. In Fig. 3 the four lowest model potential curves are compared with reason- 
able ab initio CI results [17]. The ground-state curve deviates as expected: the energy 
becomes considerably lower for internuclear distances smaller than 4a o. The next 
higher potential curves show an even more dramatic failure of the model potential 
approximation. This may easily be explained by the softness of the He core: in an all- 
electron calculation [17] the sudden drop of the upper curves is related to configuration 
mixing of Hels2-H2sp with He ls2sp-Hls, In other words, the positive nuclear charge 
of the hydrogen atom, especially in its excited state, is only weakly shielded and can 
stron~y polarize the He ls 2 shell. Therefore at smaller internuclear distances and 
especially at higher energies the frozen core approximation and the core-valence 
separability breaks down, because the exact wavefunctions contain significant contri- 
butions from core-excited configurations. The molecular pseudopotential operator is 
no longer the sum of the pseudopotentials of the free atoms, Whereas the ground-state 
energy will usually be lowered by these approximations, the reverse may hold for 
excited states (see Fig.3). 

3. Discussion 

In recent years a considerable number of model potential calculations have been per- 
formed more or less successfully 2. The most systematic investigations have been done, 
among others, by Switalski and Maurice Schwartz [7], by Dixon and Hugo [18], and 
by McWilliams and Huzinaga [40], and, more recently, by Durand and coworkers 
[35, 45] and by Kahn et al. [36] during the course of our own work, These model 
potential calculations differ in several respects, concerning limited basis sets, approxi- 
mations of the model potential integrals, and the type and parametrization of the 
model potential used. Therefore the question may be raised whether the quality of the 
model potential results obtained is determined a) by the numerical approximations 
applied, b) by the chosen parametrization of the model potential, or c) by defects 
inherent in any type of model potential. 

3.t Model Potential Integral Approximations 

In Tables 4-7 are listed the model potential orbital energies of Maurice Schwartz (M.S.) 
[12]. His results deviate quite considerably from the full SCF values. There are three 
differences between M.S.'s and our calculations: M.S. used a smaller basis set, a dif- 
ferent ansatz and parametrization of the model potential, and finally he did not com- 
pute the one-electron model potential integrals exactly but used the approximation 
scheme of W. H. E. Schwarz [1, 19]. In order to test whether the deviations in M.S.'s 
results are caused by this integral approximation, we performed calculations on BeH~ 

2 It should be noted that workers in this field often state that their pseudopotential results are not 
particularly inferior to full ab initio calculations and that agreement is very good, even in the 
case where qualitative trends are only roughly reproduced [7, 8, 12, 28, 43]. 
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(Table 7), in which case M.S. obtained the wrong order of the orbital energies. We found 
that although the approximated one-electron integrals differ by up to several per cent 
from the exact ones, the SCF results are only insignificantly influenced. Therefore the 
deviation seems to be mainly caused by the different ansatz and parametrization of 
the model potential (see below). That the integral approximation of Ref. [1] works quite 
well is also demonstrated by the corresponding calculations of M.S. [ 15] on LiH § and 
Li~ (see Tables 8 and 9). 

Contrary to this, the integral approximation of Linnett et aL [9], by which the angular 
dependence of the model potential is simply averaged out, seems much too crude (see 
Table 2). That their unreasonable results are not caused by the Floating Gaussian basis, 
as suspected by the authors, may be seen from the recent FSG calculations with proper 
integral handling by Barthelat [39] (see Table 2). The different behavior of the model 
potentials for different angular momenta has to be treated explicitly, especially if finer 
details, e.g. correlation effects [26], are to be accurately reproduced (see also Ref. [27]). 
Therefore we are not sure that an/-independent model potential, as used by several 
authors, will always give reasonable results. 

3.2 Parametrization o f  the Model  Potentials 

Kahn et al. [36] and Durand et al. [37] have argued that it is essential to fit the model 
potentials to properties of the neutral atoms and not to those of highly charged one- 
valence electron ions (as we do), and furthermore to fit not only the energies but also 
the wavefunctions. 3 However, the quality of the corresponding model potential results 
of Kahn [36] on HF and F 2 and of Durand [35] on F2, HF and H20 (see Table 2) is 
comparable to our model potential results on H20 and N2. 

On the other hand, the ab initio model potentials of Schwartz et aL [7, 12], which 
were adjusted to SCF energies and wavefunctions, gave unsatisfactory results (see 
Tables 2-7). In order to correct for the deficiency of those model potentials, they 
introduced a scaling procedure of the two-electron integrals, following a suggestion of 
Simons [20]. Two extra parameters are introduced for each first-row atom, which are 
adjusted so that the orbital energies of the corresponding hydride molecules are approxi- 
mately reproduced. These parameters are then used in the calculation of other mole- 
cules. The orbital energies for a series of molecules were then at least qualitatively 
correct (correct order), however, the deviations are still up to -+3 eV (see e.g. Table 3). 
In the case of H20 and N2, they also reported properties of the potential curves, which 
again were not very accurate (see Tables 2 and 3). Simons [20], who proposed the 
scaling of 1/r12, has also calculated the water molecule, using yet another ansatz for 
the model potential. His results [8] (see Table 2) also do not show good agreement 
with the full SCF values. This demonstrates that different forms of the model potential, 

3 Of course, in this case the determination of the model potentials has to be performed on the 
ab initio SCF level which is more laborious than our scheme. Furthermore the core-valence correla- 
tion and the relativistic reorganization of the inner shells cannot easily be handled in this way. 
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even though they reproduce several atomic properties satisfactorily, may behave quite 
differently in molecular calculations. A very drastic effect of this kind has also recently 
been observed by M.S. (private communication, [44] ). M.S. changed pairs of his ab 
initio model potential parameters to some degree by using a different kind of adjust- 
ment to the SCF orbitals in such a manner that the atomic valence energy levels did not 
change. Nevertheless, his molecular results could be considerably improved in this way. 

So far we have discussed calculations using the Vang type of model potential. Another 
type is the "core orbital projection potential" 

OCC,  

Vorb = 7~ ic>ac(cj (5) 
c 

where c denotes some approximation to the occupied core orbitals, and ae adjustable 
parameters. Although Nor b is formally more similar to the exact pseudopotential 
operator [21], this model potential leads to theoretical difficulties [2] and sometimes 
to problems in numerical calculations [2, 22]. However, it seems that, in practice, these 
difficulties can be handled by a "balanced" choice of the basis [18, 23, 24]. Indeed, 
in recent calculations of this type, on first- and second-row molecules, Huzinaga et al. 
[25, 40] obtained very promising results (see Tables 2 and 3). 

Summarizing, the quality of molecular model potential results strongly depends on 
"suitable" parametrization of the atomic model potential. One can only judge the 
superiority of a special type of "semiempirical" or "ab initio" model potential by its 
capability of reproducing a large amount of atomic and molecular data, This situation 
introduces some amount of empiricism into any kind of model potential method. 

3. 3 Defects o f  Any Model Potential Method 

One of the main problems with the model potential approach is that both the one- and 
the two-electron parts of the Hamiltonian can only be determined approximately. Con- 
sequently, specific deviations will occur in orbital energies and total energies (concern- 
ing correlation energies and singlet-triplet splittings, see Refs. [45, 46]). These devi- 
ations can be minimized by a "suitable" parametrization of the model potential. Non- 
polar and weakly polar compounds can then be calculated with quite high accuracy. 
This also seems to hold for heavier species. Small errors in the molecular results are 
caused by corresponding errors in the model description of the atoms. E.g. angular 
dependent properties may behave slightly incorrect if the hybridization changes with 
bond angle. 

Some time ago, based on a thorough theoretical investigation [1], the largest deviations 
had been predicted in polar molecules with atoms from the left side and lower part of 
the periodic system. The upper core orbitals of these atoms have rather high orbital 
energies. They may be polarized in the molecular environment and can mix with 
valence AO's from a strongly electronegative atom (core shell binding). The trend we 
have found in this work, using a special type of model potential, confirms this general 
prediction. The ground-state potential curves of such species emerge too low at small 
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internuclear distances. The error is expected to increase for heavier atoms. These errors 
and similar ones in transition metalcompounds 4 [2, 29, 36, 43] may also be overcome, 
however, by explicitly treating the electrons from those atomic shells which are usually 
termed the highest core shells, as the ls shell in Li or the 3sp shell in third-row transition 
metal atoms. Of course this is a conceptual drawback, since the number of  "valence 
electrons" is now significantly increased. 

4. Summary 

In conclusion, the model  potential  approach will give excellent results, at least for the 
lower states (where core excitations do not ye t  play a role), of molecules consisting of 
atoms from the right and upper parts of  the periodic system, that  is mainly of the 
non-metallic elements and hydrogen. Furthermore,  the model potential method is also 
expected to give correct results for polar molecules containing atoms from the lower 
and right part of the periodic table (electropositive and transition metals) if  we also 
explicitly treat the electrons of the "highest core shell". For  molecules with heavier 
atoms the model potential  method is the only simple device to take the strong influence 
of  the relativistic core contract ion on the valence shells into account. The "empirical" 
version of the model  potential  method can also simulate the influence of  core-valence 
correlation. Therefore, from the practical point  of  view, the model  potential  approach 
is still very promising. 

Appendix 

Corrections to Part I o f  this series (Ref. [2]) 

In Table 4 of  Part I, the 2s ecorrect (and A) values for N 2s2p 3 and O 2s2p 4 should read 
25.86 ( - 0 . 1 4 )  and 34.02 ( - 0 . 3 0 )  instead of  26.06 (+0.08) and 34.37 (+0.05). The 
headline of  Table 5 should read 3s and 3p instead of  2s and 2p. 3s ecorrect for C16+ 3s 
should read 114.4 instead of 113.4; the corresponding A-value is, however, correct. 
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4 A typical failure of this kind has been found by Osman et al. [43] in the case of Ni(CO)4, 
although the opposite is stated in the text (mainly based on a misprint of the ab initio values in 
their own table). The two most important molecular orbitals for chemical bonding in the complex 
are the 8a i and 8t 2 types. The 8t 2 is half an eV above the 8a 1, and the CO ~r orbitals are lying 
between them. Treating the Ni 3sp electrons as inert core electrons, Osman et al. find the 8aa and 
8t2 levels just reversed. Another failure is discussed by Demuynck: Chem. Phys. Letters 45, 74 (1977). 
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